
What Docker really is

W. Adam Koszek
Koszek ORG

wojciech@koszek.com

2022-10-05T17:47:10Z

It felt strange when Docker first came out, since I couldn’t really understand
what it is. It is an interesting feeling when people market and brand a new
technology in a way which makes it obscure and hard to understand. So below
you have my explanation of Docker, the way I would like to see it couple of
months ago.

Docker in one paragraph
Docker is a manager for isolated buckets of software called containers. I gives you
a way to say: “My software is based on Ubuntu; it must have these 4 packages
installed, and these 5 commands must be executed to make it run continually”.
These steps will be done at “build” time, during which your ~1GB image will be
created. From this image containers with your software can be started on many
OSes.

More details.
Build is basically a nice term for downloading all the junk like binaries, software
libraries and data-files, stitching them all together through the command line
tools and making sure that whatever is in this “bundle” is exactly what you
requested and what you need. This image is specified in Dockerfile.

The image is a filesystem snapshot and has a name. For example, wkoszek/base
is a name of the image where I keep basic software for simple projects. Or
ruby:2.2.4 is an image with Ruby 2.2.4. You can then take this build image
and export it to the server. Later, other people can download it too, and start
their containers with your software. Container is the instance of the image.
Basically you can make many active running containers out of the image if you
want. To compare it: think of the program on a disk, and a process running in
the memory. And some programs you can start a many copies of . Docker image
is similar.

1

wojciech@koszek.com


Virtualized or not?
Now Docker is branded as a virtualization platform. This is partially true. It’s
more of a separation manager. When you run on Linux and you want to start a
container, Docker tools will talk to the kernel and tell it to create a separate
“jail” for new programs about to be started. You can make this jail have limited
CPU time, limited memory or just simply have no limits. Afterwards you can
start a program in a jail and this will make this program be isolated. If someone
were to take over the program from the jail, they’d be able to destroy only things
within a jail, but not the main system.

So Docker runs on Linux and is basically based on Linux features.

What happens when you run Windows or Mac? This is where it gets tricky.
Docker was branded as multi-platform solution, able to run the same software,
anywhere, with no changes.

How to make your Linux-based image run on Mac?

That’s simple. You run Linux VM on Mac, and within this VM you run Docker.
Docker tools which run on OSX are smart enough to talk to this VM first. And
in the VM everything is as explained above. It’s pretty . . . primitive when you
think about it, but it works.

Once again: Docker is only multi-platform when running Linux on your native
platform is viable. In fact the old Docker on OSX required running VirtualBox in
the background. New Docker Beta runs Linux in a Apple-branded virtualization
framework, and Docker inside of it. I haven’t looked at how Microsoft Windows
is handled, but I know they have their virtualization features too, so I suspect
it’s equivalent.

Let me add to that: whatever you’re running inside of Docker are real Linux
programs compiled for your computer architecture. If you have 32-bit ARM
CPU like Raspberry PI, and you want to grab a ready-to-use image, you must
select the right image type. Otherwise you’ll attempt to fetch x64 image and it
won’t work.

How to start many containers?
The idea of containers shows its real benefits if you deploy a system with many
elements. For example you can think of a modern website as a software with
a powerful database (SQL), fast memory storage (Redis/Memcached), engine
(Rails/NodeJS), HTTP server etc. And it’s beneficial to have it all loosely
coupled and separated, so that you can test/mock individual elements without
impacting others. Containers help with that, because they keep all these packages
in isolated jails, and let them communicate only when you let them.

So in the above example one could put SQL database in one container and all
memory storage, HTTP storage and Web engine in their own separate containers.

2



And you could say: I’m OK with SQL database talking to a Web engine, but
not to the memory storage. And to do this, you may use Docker Compose.

Docker Compose explains the whole system in a file called docker-compose.yml.
This is where you can say that Web engine needs a memory storage and a
database, and Compose will start things for you in a correct order.

Summary
That’s pretty much it. Intentionally I kept you away from technical details, since
Docker documentation does a good job at it.

Let me know if you’ve found this article useful and whether screencast
demonstrating this topic step-by-step could be beneficial

3


	Docker in one paragraph
	More details.
	Virtualized or not?
	How to start many containers?
	Summary

