
Treat Continuous Integration as your virtual user

W. Adam Koszek
Koszek ORG

wojciech@koszek.com

2022-10-05T17:46:50Z

Ninety five percent of professional software engineers use Jenkins as a Continuous
Integration. The rest are consumers of Travis-Ci, Circle CI and many other
hosted CI platforms. None of these platforms are opinionated. They are just
a little smarter replacements of cron, allowing you to simply throw many
commands into the flow to build your software. We use these tools in a dump
way, I argue, and it wastes the time of customers of our software.

My view is that you should use Continuous Integration server as your virtual
user. Your testing buddy. He watches over your arm and sees you pushing new
changes to the repository. The moment you finish, he goes and fetches all your
stuff tirelessly. And the flow of this virtual user should be the same as your
normal user.

Problems with existing Continuous Integration platforms
All CI solutions make it hard to structure your CI jobs as a virtual users.
Because they are flexible, they let us stick many commands and flows into their
configuration. In the case of Jenkins it’s Jenkinsfile, in case of Travis-Ci it’s
travis.yml etc.

Sometimes I see people using two systems for testing. Instead of converging
the configurations, they develop them independently. So you’ll see many, many
steps in travis.yml and cicle.yml that are fairly different. That’s a mistake.
Don’t do this

The issue I have with these solutions is that once you put your logic there, you’ve
just made your flow better for nobody else, but yourself. Neither Jenkins nor
Travis-Ci flows can be reproduced easily. Users can’t replay these files, so all the
knowledge you stick there is useless, or hard to use at least.

1

wojciech@koszek.com
https://jenkins.io
https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Continuous_integration
https://www.travis-ci.org
https://www.circleci.com


Alternative
Alternative solution is simple. Follow a Single Command Principle. Automate
your build, test and installation stages through a script, and then just use it on
your CI server. The very same script

At most, your CI job should have 1–3 commands. Again I know it’s hard, since
things like shipping secrets and SSH keys to your CI server may be very specific
to the platform you use. I get that. But remember that everything what you
do in CI server configuration can be done in a normal script, and I’d rather see
that. Make it adjust accordingly depending on whether it’s a Travis-CI builder,
or an unknown host.

This way the code fresh out of the repository can be both continually tested,
but also delivered to the user – a thing that we really care about.

Summary
I would like to see your Continuous Integration best practices and how you
handle managing them in your environment.

2

https://www.koszek.com/blog/2017/04/29/single-command-principle/

	Problems with existing Continuous Integration platforms
	Alternative
	Summary

